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LONG-TERM GOALS

The goal of this project is to develop spectral analysis techniques for ocean color analysis that are
explicitly designed for use with hyperspectral data.

OBJECTIVES

The CoBOP program offers a rare opportunity to test any spectral analysis techniques with a
wealth of remote sensing and in situ spectral data. Our objective is to develop a set of spectral analysis
methods that are appropriate for remote sensing and to adapt them to remote sensing of ocean color.
Our eventual objective is to expand the capabilitgdourately classify water types and bottom types
and to extract accurate bathymetry using hyperspectral image data. The procéichedssted and
evaluated using data collected during the CoBOP field programs.

APPROACH

We have defined a three-pronged approach: 1) adapt laboratory spectroscopy techniques to
remote sensing, 2) expand multispectral approaches where applicable, 3) develop novel approaches
where necessary.

Our initial approach was to rely heavily on existing spectral analysis methods developed for
laboratory applications. Clearly, not all methods used in spectroscopy can be directly adapted to remote
sensing analysis because there are issues that are unique to remote sensing (e.g., variable illumination,
atmospheric transmission, lack of reflectance standards, etc.). Nonetheless, some of the approaches
should be adaptable to remote sensing.

We are also exploring ways to expand the standard multispectral approaches to spectral analysis.
Their inherent limitations notwithstanding, these methods are robust and well understood. Our
approach here is analogous to a change of variables or scaling to facilitate a mathematical procedure.
By using derivatives or other spectral measures as the base data set, an essentially non-linear system
may be rendered quasi-linear. Linear analysis tools will then be applicable.

Anticipating limits in both the previous approaches, we are also working to develop novel
approaches based on radiative transfer theory. The approach is one of optimizing model prediction to
match remote observations. All three approaches will rely heavily on radiative transfer modeling,
although the models vary with the approach.
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WORK COMPLETED

Adapting laboratory spectroscopy methods

Three general analytical procedures have been identified as promising: 1) spectral feature
extraction, 2) non-linear optimization, and 3) self-modeling. Spectral feature extraction software
designed to identify spectral derivatives that are consistent for a given controlled variable, or which
correlate with a known feature have been developed (Tsai and Philpot, 1998). Non-limeiaatqh
and self-modeling procedures have also been developed. All software is in a test stage, that is, the
procedures can be run by the programmers using test data sets (including real data), but have not been
put in to a form easily used by other researchers. At present they have only been applied to synthetic or
derived data.

Expanding multispectral approaches

The most common algorithm for estimating depth and water quality from the brightness of a
remote signal relies on a simplified radiative transfer model that requires a uniform water type and
bottom type. Philpot (1989) demonstrated that an equation with the same simple form, derived from a
two flow model (Philpot, 1987) would lend itself to a multispectral solution which would significantly
improve the accuracy of the depth estimate while simultaneously providing an estimate an the effective
spectral attenuation function. The method is at least as effective and usually more effective with the
increased number of spectral available in a hyperspectral system. We have generalized the solution
further by replacing the original measurements with spectral derivatives and statistically optimized that
solution.

Novel Approaches

The analytical spectroscopy techniques considered most appropriate for application to remote
sensing all relied on a fundamental assumption of linearity in the combination of signals. For example, if
two substances with different absorption coefficients are mixed together, the total absorption should be
a weighted sum of the individual absorption coefficients. While this may be true in some situations for
remote sensing of ocean waters, it is hard to make a very general argument, especially for coastal
waters. This has led us to a pursuit of new approaches which are not so limited. The present stage of
the development is radiative transfer modeling of the optical properties of the water as input to
Hydrolight (Mobley, 1994). Hydrolight is being used to predict the water-leaving radiance for a wide
range of water types, depths and bottom conditions. The resulting data set will be used to test inversion
algorithms designed to extract information about the water type, depth and bottom type from the
remote spectral data.

RESULTS
Adapting laboratory spectroscopy methods

The methods developed have been tested with synthetic data. Within the working linear
assumptions they appear to be very effective. As an example, when presented with a set of mixed
reflectance signals (Fig. 1a), the data are first converted into a set of absorption spectra. The self-
modeling spectral decomposition algorithm will then find an optimal, minimum set of absorption spectra



that can be combined to reproduce the observed spectra. The component weights would be
proportional to the concentration of the components. To the extent that the linear assumptions hold,
the procedure is likely to converge on realistic base spectra.

Mixed Signal Estimated Absorption (Water excluded)

B

0.05

400 450 500 550 600 650 700
Wavelength (nm) Wavelength (nm)

Estimated Normalized Absorption

0.14 + C

Figure 1. Demonstration of

gpectral deconvolution using the

self-modeling algorithm.

E 0.08 + a) a set of reflectance spectra,
b) apparent absorption spectra

derived from the reflectance

spectra, and c) an optimal (and

0.02 + minimal) set of basis spectra

0 , , , , —— which can be combined to
005" 450 500 550 600 650 700 | reproduce all of the original

wavelength (nm) spectra.

0.12 +

0.1+

0.06 +

ad 1

0.04 +

1

Expanding multispectral approaches

The general form of the spectral solution for depth estimates is:
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where lg is the radiance at the detectoy, it the radiance from optically deep wateyjd.a radiance
term expressing the contrast between the water reflectance and the bottom reflectance, and g is an
effective attenuation coefficient.



The 0" order solution (n = 0) corresponds to the original multispectral algorithm (Philpot, 1989). The
same form of the equation is valid for any order of derivative. All solutions require that the deep water
radiance (ly) for the target water type is either known or can be estimated. A principal components
(PC) analysis of the"Dorder solution yields an estimate of depth as well as the effective spectral
attenuation coefficient. A PC analysis of any of the derivative solutions was not as effective, largely due
to the presence of outliers in the distribution of the spectral derivatives. This is illustrated in Figure 2.
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If the outliers are removed using a method called "outward outlier removal" which selects an optimal set
of samples to produce a near normal distribution, the depth estimate is significantly improved (Kohler et
al., 1998). As is shown in Figure 3, this was an improvement even over the PC analysis applied to the
original radiance data.

As with the spectral decomposition method described above, the data used for this test was
produced using Hydrolight. The method has yet to be tested against a real data set.

Comparison of Depth Estimates for
Both Bottom Types Usimg Both Methods
10 PCA (Sand) .-
14 4-[= = = Derivative (Sand) "r"— =2
PCA (Algae) b - i .

g 12 o Dervaive (Algae Figure 3. Comparison of depth
g 10 estimates using PC analysis on
S s amplitude data and outlier removal
I and with 2nd derivatives.
= 4

2

0 T T T T T T T

0 2 4 6 8 10 12 14 16
True Depth (m]

Novel Approaches

There are no significant results from the modeling work at this time.



IMPACT/APPLICATIONS

The tests with synthetic data indicate that there is substantial information in the hyperspectral
reflectance and that it may be possible to extract at least relative spectral information about the water
column, bottom type and water depth. It is not at all clear that absolute values, (e.g., absorption
coefficients, absolute depths) will becessible with remote data alone.

TRANSITIONS

The intent is to apply our techniques to data collected by other investigators in the CoBOP program and
to facilitate the data analysis. Thus far we haeeived reflectance spectra collected by Drs. Mazel,
Yentsch, Zaneveld and Zimmerman. We hope to be working with these and other data extensively in
the coming year.

RELATED PROJECTS

AASERT Project, NO00149710721. Results of the work performed under this funding have been

incorporated into this report.

REFERENCES

Mobley, C.D. (1994) Light and Water: Radiative Transfer in Natural Waters. Academic Press, New
York, 592 pgs.

Philpot, W.D. (1989) Bathymetric mapping with passive multispectral imagery. Applied Optics,
28(8):1569-1578.

Philpot, W.D. (1987) Radiative transfer in stratified waters: a single-scattering approximation for
irradiance. Applied Optics, 26(19):4123-4132.

Tsai, F. and W.D. Philpot (1998)Derivative Analysis of hyperspectral data. Remote Sensing of
Environment, 66:41-51.

Kohler, D.D, W.D. Philpot, and C.D. Mobley (1998) Derivative based hyperspectral algorithm for
bathymetric mapping. Ocean Optics, November 11-14, 1998, Hawaii.



